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Andrea D’Angelo  

Anatomia della mente artificiale 

 
Abstract: This paper explores the evolution of the ‘dream of 
the machine’ focusing on Artificial Intelligence. By analyzing 
the shift from early symbolic logic and Expert Systems to the 
sub-symbolic architecture of neural networks, the study 
highlights a fundamental paradigm shift: the transition from 
machines as rigid calculators to systems capable of autono-
mous learning via backpropagation. Through a technical and 
philosophical examination of the perceptron, the paper ar-
gues that contemporary craftsmanship aims not merely to 
build complex tools, but to foster ‘artificial animals’. This 
evolution redefines the human-AI relationship as an ecologi-
cal and ‘parental’ bond, shifting the role of the engineer from 
programmer to breeder. 
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of the Artificial. 
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1. Il sogno della Macchina 

È curioso pensare che, benché spesso si ap-
procci la questione di automi semoventi, macchine 
senzienti e forme di vita artificiale come voli più o 
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meno pindarici di una mente ambiziosa e mo-
derna, queste siano invece immagini di concetti 
tanto vecchi da costituire dei topos letterari e mi-
tologici quasi da manuale. Dai servitori d’oro di 
Efesto al danzatore artificiale di Yan Shi, passando 
per i karakuri ningyō della tradizione giapponese 
o i golem di quella ebraica, l’idea di oggetti in grado 
di simulare un’anima senziente attraversa presso-
ché tutte le ere e i continenti.  

Tolto il senso di meraviglia per la specifica 
realizzazione del concetto in questo o quel mito, 
questo o quel racconto, rimane il leggero senso di 
familiarità per un’immagine vaga e chiara allo 
stesso tempo. È come osservare le conclusioni di 
un ragionamento che non ci si era accorti di dare 
in qualche modo per scontato. Può darsi che la 
cosa sia il prodotto di un’implicita stimolazione 
dell’immaginazione fin dall’infanzia, nata dall’os-
servazione di oggetti semoventi appositamente 
creati per stupire1 – o magari per i bambini, mae-
stri nell’antropomorfizzazione e nell’animismo in-
fantile. L’approdo a forme di vita costruite da mani 
umane potrebbe configurare una deduzione logica 
tutt’altro che sconclusionata, un immaginario con-

                                                           
1 Basti pensare alle trottole o alle marionette, oggetti con mi-
gliaia di anni di storia multiculturale alle spalle. 
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diviso, taciuto, ma presente. E se da un lato il con-
fine tra l’inanimato e l’animato sembra presentare 
un ponte gettato dall’immaginazione, dall’altro 
lato nella storia la razionalità ha a più riprese cer-
cato di collegare il mentale e il meccanico, approc-
ciandone e spiegandone il funzionamento nell’ot-
tica di una sequenza meccanicistica di piccoli 
passi. 

 
2. Il pensiero come Meccanismo 

La base del corretto ragionare, già teorizzata 
da Aristotele (384-322 a.C.) con l’invenzione della 
logica, prende la strada di un lungo e non lineare 
processo di semplificazione e di riduzione all’osso 
della composizione di proposizioni e unità logiche 
autonome. L’idea era che la semplice applicazione 
di determinate regole di composizione non po-
tesse che, partendo da affermazioni vere, condurre 
a conclusioni altrettanto vere. È una proceduraliz-
zazione asettica del pensiero, a questi livelli an-
cora ingenua e parziale – se si vuole – ma nondi-
meno cova i semi di una pretesa, quella di poter in-
gabbiare l’intero mondo del pensare razionale, 
spesso ancora oggi considerata la forma di pen-
siero più alta, dentro la cornice della necessità. Se 
da un lato le culture immaginavano macchine ani-
mate, dall’altro si cercava di ridurre l’anima a un 



  

qualche complesso processo meccanico. Il pro-
blema, si pensava, era solo fornire le giuste ipotesi 
di partenza, la necessità avrebbe fatto il resto.  

È un calcolo brutale, di rigore matematico2, 
che però a un primo stadio possiede ancora 
un’anima fortemente umana, tutta spesa nel rico-
noscimento del vero. La semplice regola di appli-
cazione di una relazione logica non può infatti dirci 
nulla sull’entità manipolata, così come il ricono-
scere la correttezza del sillogismo “Se il cielo è 
rosso, è il tramonto, ma il cielo è rosso; quindi, è il 
tramonto” non equivale ad alzare gli occhi verso 
l’alto. L’esperienza umana è a questo livello ancora 
il discrimine fondamentale nell’unicità del suo 
ruolo di arbitro del contesto. Arbitro sia in quanto 
unico a poter decidere la verità delle affermazioni 
date in pasto al Meccanismo (e come potrebbe do-
potutto sapere se il cielo è davvero rosso in questo 
momento?) e più ancora in quanto primo inter-
prete della maglia semantica nella quale farlo cre-
scere (il cielo è rosso solo al tramonto? E dell’alba 
cosa ne accade? Occorrono maggiori indicazioni: 
chi decide quante e quali?). 

                                                           
2 E infatti non poco si interrogheranno i matematici sulla rela-
zione tra la matematica e la logica e quale delle due sia la madre 
dell’altra. 
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Questo è un nodo tematico cruciale, non 
sempre palese, ma che ciononostante è stato co-
stantemente sotteso all’interno di tutti gli approcci 
matematicizzanti del razionale. Appresa l’arte 
della manipolazione, meccanica prima digitale 
poi, di enti logici, ci si è trovati davanti un potente 
pallottoliere, che tuttavia non sembrava in grado di 
scalzare l’uomo dal suo tradizionale ruolo di arbi-
tro del razionale. La chiave dell’intelligenza non 
sta tutta nell’abilità di applicare regole di composi-
zione, ma nello sforzo produttivo di una deduzione 
e prima ancora di una decisione. “Per cosa stanno” 
le entità che ho imparato a manipolare? A cosa ri-
feriscono? Decidere di segmentare semantica-
mente il mondo in questo o quel modo può influire 
considerevolmente sulle conclusioni dei propri ra-
gionamenti. 

Difficilmente attribuiremmo un’intelligenza 
a una calcolatrice per quanto veloce e precisa 
possa essere – e infatti storicamente non lo si è 
fatto – perché sappiamo benissimo che nel fare di 
conto essa non abbia la minima concezione di cosa 
stia maneggiando. Il numero binario 00101 se 
sommato a 01100 dà come binario il numero 
10001: la cosa è ottenuta meccanicamente tramite 



  

l’applicazione di regole di combinazione3 e senza 
che le entità di input od output siano inquadrate 
all’interno di una rete semantica significativa per 
l’operatore.  

Quest’ultimo potrebbe quindi star addizio-
nando due numeri, calcolando la prossima mossa 
in una partita di scacchi o elaborando le coordinate 
di schianto di una testata missilistica, indifferen-
temente. La cosa rilevante è che la regola sia appli-
cata correttamente. Si giunge a un’ironica e para-
dossale condizione: se si parte dall’idea di raziona-
lità come massima espressione dell’intelligenza e 
la si declina come asettica applicazione di regole di 
deduzione corrette, si giunge alla teorizzazione e 
realizzazione di calcolatori estremamente potenti 
ai quali tuttavia sembra mancare ancora il fulcro 
davvero rilevante per il raggiungimento di una 
vera intelligenza. Il problema è reale o percettivo?  

Storicamente, uno dei filoni di maggior suc-
cesso delle ricerche sull’Intelligenza Artificiale è 
stato quello dei Sistemi Esperti: complessi compu-
tatori linguistici in grado di dedurre lo stato di sa-
lute di un paziente, la struttura chimica di una mo-
lecola o portare avanti una conversazione con un 
utente (D’Angelo 2025). Questo avveniva tramite 

                                                           
3 Nello specifico, per somma in colonna: 0+0=0; 0+1=1; 1+0=1; 
1+1=10. 
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applicazione di regole di inferenza (deterministi-
che in un primo momento, statistiche successiva-
mente) fornite da un esperto della specifica disci-
plina di applicazione (da cui il nome) nella forma 
“SE Premessa DEDUCI Conseguenza”. Umana la 
stesura delle regole di deduzione, umano l’inseri-
mento delle premesse, meccanico il collegamento 
fra i due e la personalizzazione dell’output.  

Sebbene nella procedura di calcolo i Sistemi 
Esperti facessero uso di strumenti matematici 
avanzati, euristiche di selezione dei ragionamenti 
più efficienti, sistemi di prioritizzazione degli in-
put o degli output e potessero arrivare a gestire 
output di natura probabilistica la loro natura non 
differiva nella logica da quella di una calcolatrice 
particolarmente complessa. Non erano presenti di 
norma sistemi di autoapprendimento efficienti e 
ciò portava la macchina a raggiungere, nel mi-
gliore dei casi, gli stessi risultati dell’esperto che la 
programmava. Non andava oltre l’accostamento 
razionale di entità logiche impartito dall’alto e tut-
tavia storicamente i Sistemi Esperti sono stati ca-
talogati come forme di IA, laddove simile ricono-
scimento alle calcolatrici non è mai stato preso in 
considerazione. Perché? La chiave è, io credo, la 
qualità della manipolazione del Linguaggio Natu-
rale: l’inserimento degli input sotto la forma della 



  

comunicazione che riconosciamo come nostra 
permette l’ascrizione dell’intero meccanismo di 
deduzione a strutture e procedure sulle quali ope-
riamo un’analogia con la nostra mente.  

Sebbene la macchina continuasse a operare 
con la stessa logica di indifferenza alla semantica 
degli enti logici manipolata, era comunque perce-
pita come una simulazione dell’Intelligenza: era 
Intelligenza in quanto sembrava parlare la nostra 
lingua. Sembrava, ma senza farlo davvero e questo 
finiva per originare il principale problema dei Si-
stemi Esperti: la loro inefficiente scalabilità. Co-
struiti come alberi di deduzioni calati dall’alto e in-
nestati gli uni sugli altri, non erano in grado di ri-
cavare autonomamente leggi comportamentali da 
autoimporsi. Il loro funzionamento operava su se-
quenze di “Se x1…xn allora y” e al crescere delle x 
potenziali l’albero delle possibilità da dedurre si 
divaricava esponenzialmente. L’idea che un 
esperto potesse programmare per tutti i possibili 
output divenne ben presto irrealistica. 

 
3. Il sogno della Macchina 

L’altro fecondo filone di ricerca, quello dei 
Sistemi subsimbolici, si mosse su presupposti dif-
ferenti: insegnare a una macchina a riconoscere 
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l’esistenza di pattern di correlazione statistica (Co-
sta 2024; Ekundayo, Ezugwu 2025; Schmidhuber 
2015). L’ispirazione veniva dal funzionamento cel-
lulare dell’elaboratore più efficiente e potente co-
nosciuto, il cervello umano. Basato su una intricata 
geografia di interconnessioni, il cervello presenta 
oltre 85 miliardi di piccoli nodi di elaborazione ele-
mentare, i neuroni. Ognuno di essi è composto da 
un nucleo di elaborazione degli input (soma), un 
assone che veicola la scarica elettrica di output e 
dei punti di connessione (bottoni sinaptici) sulle 
sue ramificazioni terminali attraverso i quali sca-
ricare il segnale elettrico verso i recettori dei nu-
clei degli altri neuroni (dendriti).  

Il suo funzionamento basilare, per ciò che 
concerneva una sua schematizzazione operativa, 
era da assimilare a quella di un operatore logico a 
input e output binari del tipo “scarica presente”, 
“scarica assente”. Gli input dei neuroni precedenti 
possono infatti raggiungere o meno un certo po-
tenziale di attivazione del soma, che a sua volta 
può reiterare il segnale lungo l’assone e comuni-
care la sua attivazione ai neuroni ad esso connessi 
tramite dendriti e bottoni sinaptici. La chiave di 
volta rimane la forza del segnale che ne può ren-
dere “contagiosa” e operativa la scarica oppure la-
sciare che l’attivazione neurale non abbia ulteriori 



  

conseguenze. Inoltre, tipologie differenti di neu-
roni sono in grado di operare sui segnali di in-
gresso in maniera differente e personalizzata: esi-
stono input che stimolano il neurone a scaricare e 
input che ne inibiscono invece la scarica, gene-
rando innumerevoli combinazioni possibili di se-
quenze di input-output eccitatori-inibitori in 
grado di gestire le informazioni con pattern estre-
mamente variabili e personalizzati.  

Lo strumento è certamente potentissimo e 
riposa sull’efficienza delle interazioni dinamiche 
possibili a partire anche solo da pochi gruppi di 
neuroni interconnessi. È l’integrazione di questa 
stretta interconnessione a trasformare un sistema 
inizialmente binario in un elaboratore di informa-
zioni continue e analogiche. L’informazione, an-
che di ampia complessità, viene in breve veicolata 
e manipolata sotto la forma di catene dense di con-
nessioni di poli interdipendenti.  

Le prime concettualizzazioni logiche dei 
neuroni (McCulloc, Pitt 1943) avevano già mo-
strato il potere di calcolo degli stessi come poten-
ziali realizzatori di operatori logici. Il passo succes-
sivo, la formalizzazione algoritmica del loro fun-
zionamento e autoapprendimento (Rosenblatt 
1958) ne apriva le porte ad uno studio concreto e 
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un’applicazione pratica: nasceva il Percettrone, al-
goritmo matematico di ispirazione biologica in 
grado di performare calcoli catalogativi di infor-
mazioni percettive.  

Il neurone artificiale, costruito sulla sempli-
ficata falsariga dei neuroni biologici, si compone di 
un’operazione centrale di somma pesata degli in-
put forniti, sulla quale viene successivamente in-
nestata una funzione di attivazione neurone-spe-
cifica appositamente studiata per performare se-
condo le necessità e le aspettative del programma-
tore. La chiave di volta del sistema è la capacità 
dell’algoritmo di valutare gli input forniti, prima 
della somma, tramite pesi numerici che vanno a 
gerarchizzare l’importanza dei singoli input per 
l’output finale.  

Il comportamento del neurone riposa quindi 
per gran parte sulla sensibilità dello stesso per 
questo o quell’input. È la natura di somma ponde-
rata del neurone a renderlo flessibile ed efficiente. 
Ciò significa che procedure di valutazione e modi-
fica dei pesi per i vari input da avviarsi dopo ogni 
elaborazione degli output conducono l’algoritmo a 
modificare il suo comportamento in modo dina-
mico e, se la procedura è correttamente studiata e 
implementata, a migliorare progressivamente la 
propria efficienza. 



  

 

 
Grafico di flusso del segnale  

di un percettrone classico (Haykin 2008, 48) 

 
Ogni neurone si compone quindi di una se-

rie di input x1…xn, ciascuno dei quali è pesato con 
un moltiplicatore w1…wn. Tutto ciò corrisponde 
alla capacità del neurone di estrapolare e ricono-
scere informazioni – sotto forma numerica – date 
dall’ambiente. Alla sommatoria dei valori pesati 
viene poi applicata una qualche funzione di attiva-
zione, per i percettroni classici la funzione soglia 
(Hard limiter), che determina l’output del percet-
trone a seconda del superamento o meno di una 
certa soglia di attivazione (ϑ), dipendente da un va-
lore di bias (b) intrinseco al singolo neurone4. 

 

                                                           
4 Il valore bias è un valore negativo che la somma pesata deve 
quindi superare affinché il neurone restituisca un numero posi-
tivo, sul quale poi innestare la sua funzione di attivazione, clas-
sicamente la funzione soglia. 
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𝑣 = ∑ 𝑥𝑖𝑤𝑖 + 𝑏

𝑖

 

Formalizzazione algoritmica del neurone 

 

𝜑(𝑣) = {
 1  𝑠𝑒 𝑣 ≥  𝜗 
0 𝑠𝑒 𝑣 <  𝜗

 

Funzione soglia di output del neurone 

 
Cosa significa questo? Che il neurone artifi-

ciale così composto è in grado di inviare un segnale 
ad output binario qualora gli input che si trova a 
gestire siano della corretta tipologia, il tutto sem-
plicemente variando il peso dell’importanza dei 
singoli input e la soglia di attivazione oltre la quale 
il neurone si attiva. Ad esempio, si supponga di vo-
ler insegnare a un neurone artificiale a due input a 
comportarsi come una porta logica AND e scari-
care unicamente se riceve un segnale di attiva-
zione positivo da entrambi gli input. Ipotizziamo 
gli input anch’essi binari tra 0 e 1. Giacché vo-
gliamo che il neurone si attivi unicamente nel caso 
in cui entrambi gli input sono positivi, ci troviamo 
di fronte alla ricerca di un algoritmo con le se-
guenti caratteristiche: 
  



  

𝑥1 = 0

𝑥2 = 1
 
∗ 𝑤1

∗ 𝑤2

− 𝑏 → 0 

𝑥1 =  0

𝑥2 =  0

∗ 𝑤1

∗  𝑤2

− 𝑏 → 0 

𝑥1 =  1

𝑥2 =  0
 
∗  𝑤1

∗  𝑤2

 − 𝑏 → 0 

𝑥1 =  1

𝑥2 =  1
 
∗  𝑤1

∗  𝑤2

 − 𝑏 → 1 

Caratteristiche dell’algoritmo 

 
La cosa è risolvibile per tentativi, semplice-

mente provando a sostituire numeri casuali ai due 
valori peso W e al valore bias B. La soluzione è fa-
cilmente trovata, dopo poche iterazioni, sce-
gliendo infine entrambi i pesi pari a 2 e il bias pari 
a 3. Così facendo l’unico modo per l’algoritmo di 
superare la soglia B è quello di avere entrambi gli 
input X positivi. È facile vedere come semplice-
mente scegliendo un bias differente, ad esempio 2, 
il comportamento dell’algoritmo cambia, pas-
sando dall’emulare una porta logica AND a una 
porta logica OR.  

Giocando ulteriormente con pesi e soglie è 
possibile far distinguere al neurone tra i singoli in-
put, generando così gerarchie e preferenze nella 
valutazione dei dati che vi vengono forniti. 
Nell’emulazione delle porte logiche, le reti neurali 
divengono in grado di processare informazioni in 



  

maniera non dissimile da quelle di un computer, 
reagendo di conseguenza e seguendo pattern com-
portamentali che sono, come appare, intrinseci 
alla loro composizione strutturale. Quella che 
vanno sviluppando è una sensibilità alle informa-
zioni che le predisponga a mettere in atto riarran-
giamenti interni che producano gli output deside-
rati. È questa a mio avviso la più chiara esemplifi-
cazione, sebbene ormai superata, dell’analogia del 
cervello come computer. 

 
4. Il meccanismo che vede, il meccanismo che pensa? 

A questo punto, affinato lo strumento, non 
rimane che metterlo in pratica – ad esempio, si 
veda Bengio, LeCun, Hinton (2015). Si assuma ad 
esempio di voler applicare l’algoritmo al riconosci-
mento di immagini. Giocando sul fatto che il neu-
rone dipende dagli input x1…xn, che a loro volta 
possono veicolare qualunque tipo di informazione, 
leghiamo la sequenza binaria di x all’attivazione o 
meno di pixel luminosi su uno schermo 5x5. Il neu-
rone si troverà dunque ad avere un set di 25 input, 
dove i prime cinque codificheranno per la prima 
riga di pixel, i successivi cinque per la seconda e 
così via. Applicando lo stesso meccanismo ideato 
per la costruzione della porta logica AND, modifi-
chiamo l’attribuzione di pesi e bias in modo tale 
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che il neurone si attivi solamente se risultano attivi 
i pixel ai bordi dello schermo ed ecco che si ottiene 
un neurone artificiale in grado di riconoscere cor-
nici bidimensionali5. Se a questo viene poi affian-
cato un neurone che con la stessa logica si attiva 
qualora l’immagine bidimensionale presenti uni-
camente una riga centrale verticale e un neurone 
che riconosca una riga centrale orizzontale e si col-
leghino questi tre neuroni a un quarto che si attivi 
quando tutti e tre sono attivi, ecco che si otterrebbe 
un rudimentale sistema neurale composto in 
grado di riconoscere pattern di finestre stilizzate.  

Passando da input binari a input più com-
plessi, in grado di veicolare informazione sulla 
quantità di colore presente in ogni pixel, il neurone 
può essere in grado di riconoscere pattern più 
complessi di forme e colori. Ecco, dunque, i pro-
dromi logici di un algoritmo in grado di vedere e 
non solo. Variando il tipo di input, la stessa tecno-
logia può essere utilizzata per il riconoscimento di 
testo scritto o di materiale audio. 
                                                           
5 Da notare che l’esempio proposto, pur concettualmente valido, 
rimane estremamente semplificato e parte dal presupposto che 
la condizione di partenza di tutti i pixel sia l’essere spento. In-
fatti, a questo livello il neurone si attiverebbe anche qualora tutti 
i pixel fossero accesi, essendo stato programmato unicamente a 
rispondere all’attivazione dei pixel ai bordi dell’immagine. Per 
requisiti non lineari come “tutti e soli i pixel dei bordi” occorre 
costruire una rete neuronale a più strati. 



  

Il sistema funziona, ma almeno per come 
presentato qui richiede un grande sforzo di calcolo 
del programmatore per predisporre i neuroni a 
comportarsi come richiesto e quindi riconoscere 
pattern prescelti. Occorrerebbe infatti che ogni 
singolo neurone fosse appositamente studiato, te-
stando uno a uno i vari pesi interni, finché non 
fosse trovata la combinazione utile a raggiungere 
l’obiettivo prefissato. Non è però questo il caso, in 
quanto l’estrema efficienza delle reti neurali ri-
posa proprio sulla capacità del neurone di adat-
tarsi in maniera autonoma e, per così dire, risalire 
dagli output agli input.  

Come farlo? Se la struttura fondamentale del 
neurone è quella di una sommatoria di input pe-
sati, la via più efficiente è quella di permettergli di 
intervenire autonomamente6 sul suo personale set 
di pesi, che andrà modificato dopo ogni attivazione 
neuronale e in maniera dipendente dall’errore ri-
scontrato: più alta la discordanza tra il risultato ot-
tenuto e quello atteso, maggiore sarà la modifica 

                                                           
6 Questo criterio di autonomia non risponde soltanto a logiche di 
efficienza, ma è divenuto col tempo e con l’aumentare del carico 
computazionale praticamente una necessità del programma-
tore. Le reti neurali moderne possono essere composte da de-
cine e decine di strati, migliaia di neuroni e miliardi di parametri 
ponderati che rendono il controllo manuale della struttura com-
pletamente inattuabile. 



 
 
 
 
 
 
 

25 
 

 

 

dei pesi sugli input. Si apre qui il nocciolo della ri-
cerca di efficienza delle reti neurali: inventare 
meccanismi di calcolo sempre più efficaci per la 
retropropagazione (backpropagation) dell’errore.  

L’obiettivo è concettualmente semplice, 
partire dall’errore della rete neurale, ovvero lo 
scarto tra il risultato prodotto e quello atteso, e cal-
colare tramite appositi algoritmi l’influenza che 
ogni neurone della rete ha avuto nella produzione 
di quell’output. Maggiore l’influenza nell’errore, 
maggiore la correzione dei pesi del neurone indi-
viduato: la reiterazione farà il resto. Storicamente, 
l’applicazione di algoritmi di retropropagazione 
all’addestramento di reti neurali multistrato fu 
teorizzata a partire dagli anni Ottanta, dando vita a 
un filone di ricerca e di affinamento ancora oggi 
estremamente fecondo (Werbos 1982).  

L’efficienza della macchina smette quindi di 
essere dipendente dalla capacità della stessa di 
calcolare lungo il percorso indicato dal suo pro-
grammatore, ma – per così dire – prende autono-
mamente le proprie redini, andando a modificare 
quei nodi di calcolo che producono risultati insod-
disfacenti, finché l’output non soddisfi predeter-
minati standard qualitativi.  

Non bisogna tuttavia cadere nell’errore di 
crederla affrancata dall’intervento umano: come 



  

un robot che modifichi autonomamente il suo ba-
ricentro per mantenere il suo equilibrio sulla 
punta di uno spillo, la rete neurale è strutturata per 
cercare un equilibrio nelle sue risposte a partire 
dagli input ambientali ai quali è soggetta. Ciò signi-
fica che essa evolve secondo logiche in qualche 
modo biografiche e che l’ambiente ha un’influenza 
diretta sulla natura dei suoi comportamenti. La 
soddisfazione della persona che la interpella di-
venta quindi un fattore determinante del suo fun-
zionamento. Sta quindi ancora agli uomini mante-
nere il ruolo di arbitro del contesto, giacché sono 
loro che forniscono i materiali sulla quale la mac-
china si addestrerà a individuare pattern e sempre 
loro che premieranno o meno la macchina quando 
autonomamente individuerà delle categorie inter-
pretative su quei dati.  

Si tratteggia così la relazione ecologica 
Uomo-AI come quasi parentale: il programmatore 
fornisce alla macchina il suo nutrimento per lo svi-
luppo autonomo del suo comportamento e l’utente 
impartisce su questo i suoi criteri di valutazione, 
senza poter direttamente impattare sugli snodi co-
gnitivi del suo funzionamento, ma direzionandolo 
indirettamente in ottica pressoché comportamen-
tista.  
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L’invenzione (e l’affinamento continuo) de-
gli algoritmi di retropropagazione va così a chiu-
dere il cerchio del funzionamento delle reti neuro-
nali, avviando un ciclo virtuoso (almeno nelle in-
tenzioni) di iterazioni che fornisce la macchina di 
una parvenza di autonomia operativa. Nel mo-
mento, infatti, in cui la rete neurale inizia ad auto-
regolare il suo funzionamento presente sulla base 
del suo storico di funzionamento passato e degli 
input ambientali ai quali è soggetta, si avvia la sua 
nuova natura di animale artificiale, dotato di una 
propria etologia dipendente dalla sua anatomia lo-
gica, dalla sua alimentazione di input e dalla bio-
grafia dei suoi comportamenti pregressi.  

Da questo momento in poi, la via principale 
di coordinamento del suo sviluppo sarà interve-
nire con aggiunte anatomiche accessorie: sulla sua 
alimentazione, per renderla varia e adatta allo svi-
luppo che si desidera la macchina attraversi, e sul 
suo comportamento, per inibire output comporta-
mentali che non si desidera mantenere.  

In maniera lenta, ma inesorabile, l’Artificial 
Intelligence Engineering sconfina in una nuova e 
suggestiva forma di allevamento dell’artificiale. 
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